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Introduction
Numerical simulations of the laser beam propaga-

tion1 have been used in designing and optimizing all
of LLNL’s high-power lasers for inertial confinement
fusion (ICF). The architecture and design of the laser
for the National Ignition Facility (NIF) were deter-
mined and optimized using a suite of new codes
including CHAINOP, BTGAIN, and PROP92.

CHAINOP2 is a very fast lumped-element energet-
ics code with an extensive cost database, a choice of
optimization algorithms, and a set of heuristic rules for
diffraction and nonlinear effects and for operational
constraints. 

BTGAIN3 is a far-field model based on the
Bespalov–Talanov theory4 for the linearized growth of
decoupled single-mode beam perturbations in a n o n-
linear medium. Itincludes Frantz–Nodvik saturated gain,
the facility to input beam perturbations of arbitrary spec-
tral content at each component, and a postprocessor
that can construct near-field beam statistics. 

PROP92 was originally written and released by 
R. G. Nelson5 in 1992, with advice and assistance fro m
J .B .Trenholme. It isa full-featured optics propagation and
laser simulation code. Internal models are included for
most of the components in the optical amplifier and
transport system. A Fourier technique is used to solve the
nonlinear Schrödinger (NLS) equation,yielding a re p re-
sentation of the (single-polarization)complex electric
field in two transverse directions plus time (2D) as the
beam transports through andisaffectedby the optical
elements. Alternatively, PROP92 can also operate in
1-D planar or 1-D circularly symmetric modes. In the lat-
ter case, H a n k e l/B e s s e lt r a n s f o r m sa re usedi n s t e a do f
Fourier transforms. Average wavefront curvature is
explicitly removed in the Talanov transformation. Both

gain and nonlinear index effects are calculated in the near
field with a split-step approach. Propagation is done in
the far field.

In this article, we describe the algorithms and stru c-
t u re of the PROP92 code. We discuss 2-D operation,
since the restriction to either 1-D planar or 1-D circ u l a r
is straightforward. 

Vacuum Propagation Algorithm
PROP92 describes the laser beam in terms of a com-

plex electric field, E(x,y,z,t). The dominant plane-wave
portion of the beam and its center-point position, tilt,
and curvature are all explicitly removed to define a
wave function u for numerical evaluation

(1)

In Eq. (1), the laser’s optical frequency is ω0, and the
wave number is k0 = n0ω0/ c, where n0 is the index of
refraction of the medium through which the beam is
p ropagating, and c is the vacuum speed of light. The
average tilt on the wavefront is described by the quanti-
ties         and       , and the central position (x0,y0) satisfies

(2)

R i s the average wavefro n tc u r v a t u re , with the c o n v e n t i o n
t h a t positive R c o r re s p o n d s to a focusing wave. It satisfies 

(3)    R(z + δz) = R(z) − δz  .

    

x0 z + δz( ) = x0 z( ) + κ x δz k0

y0 z + δz( ) = y0 z( ) + κ y δz k0   .

      

E(x, y , z,t)

= ee i(k0 z−ω 0 t)ei[κ x (x−x0 ) +κ y ( y− y0 )]e−ik0 (x− x0 )2 / 2R(z)

× e –ik0 ( y− y0 ) 2 / 2R(z)u(x , y, z, t)  .

THE PROP92 FOURIER BEAM PROPAGATION CODE

R. A. Sacks

M. A. Henesian

S. W. Haney

J. B. Trenholme

UCRL-LR-105821-96-4

  κ x   
κ y



The complex wave function u is represented on a
regular rectangular grid

(4)

where j and k are integers in the range –Nx/2 ≤ j <
Nx/2, –Ny/2 ≤ k < Ny/2, xj = jLx / Nx, yk = kLy / Ny, Lx
and Ly are the physical dimensions of the calculational
grid, and Nx and Ny are the number of grid points. 

In a linear medium (no gain, no nonlinear index
effects), the electric field obeys the wave equation 

(5)

Using Eq. (1) and applying the slowly varying
(∂u/∂t << ω0u) and paraxial (∂2u/∂z2 << k0∂u/∂z)
approximations, we find that u translates as

(6)

w h e re R0 = R(z), and R = R(z +δz). In Eq. (6), we can
see the familiar Fourier propagation algorithm: (a)
Fourier transform, (b) multiply each Fourier mode by
a phase that is linear in propagation distance and
quadratic in angle, and (c) inverse transform. Because
u is re p resented on a discrete mesh, the continuous
transform in Eq. (6) is replaced by a discrete fast
Fourier transform (FFT). This means that the field is
actually re p resented by a function that is periodic in
both near-field and far-field coordinates. The eff e c t i v e
grid dilatation apparent in the inverse transform is
actually carried out in PROP92 by changing the val-
ues of Lx and Ly at the new observation point z + δz.
Scaling the computational grid tends to maintain re s-
olution for focusing beams (which would otherwise
occupy pro g ressively less of the grid) and avoids
aliasing of defocusing beams (which would otherwise
try to outgrow the grid and thus “wrap” information
a round the edges). The pre f a c t o r, R0/R, may be
thought of as scaling the intensity to conserve energ y
as the transverse extent of the beam changes.

Nonlinear Self-Focusing
In centro-symmetric (invariant under inversion

through the origin) and isotropic materials, the single-
frequency wave equation may generally be written as

      

u(r , z + δz) =
R0
R ∫ d2κ

(2π)2 e
i

R0

R
κ⋅re−

iR0

2k0R
κ2 δz

× ∫d2r' e−iκ⋅r' u(r' ,z, t)

      
∇2E −

n0
2

c2
∂2

∂t2 E = 0  .

    
uj ,k = u(x j + x0 , yk + y0 , z, t)  ,

(7)

where the field-dependent refractive index is

(8)

Applying the slowly varying wave and paraxial
approximations yields the NLS equation

(9)

where γ = n2/(n0cε0), λvac is the vacuum wavelength,
and I = n0cε0|u|2/2 is the local irradiance. The param-
eter γ is a material property that measures the field
phase advance per unit of intensity and per unit of
length. Because n2 and γ are positive for materials of
interest, local high-intensity perturbations create their
own focusing phase perturbations, thereby amplifying
the perturbation, and ultimately leading to catas-
trophic filament collapse. Equation (9) is written with
the intensity explicitly introduced because in PROP92,
the electric field is normalized such that |u|2 = I. As
presented, Eqs. (5), (6), and (9) are not affected by this
normalization choice.

In PROP92, nonlinear propagation effects 
a re computed by a split-step algorithm. The pro p a-
gation through the nonlinear medium is divided
into a number of steps of length δz. Vacuum pro p a-
gation steps [Eq. (6)] are alternated by thin-optic
t r a n s f o r m a t i o n s ,

(10)

For higher- o rder accuracy, the process is “leapfro g g e d , ”
with a diffraction step of length δz/2 at the beginning
and end of the nonlinear optic. 

Research shows that PROP92’s split-step algorithm
agrees with experimental results both at 1ω and at
3ω6,7when sufficient resolution is included in the
calculation. There are, however, two difficulties with
simply relying on the propagation algorithm for com-
puting all self-focusing threats: 
1. C a t a s t rophic self-focusing cannot occur in 1D,8

but time and re s o u rce constraints re q u i re that
we use PROP92’s 1-D planar mode for much of
our design optimization.9 , 1 0

    

u(x , y, z) ← u(x , y, z)ei∆B(x,y ,z)  ,

where

∆B(x, y, z) = 2πγ
λvac

u(x, y , z)
2δz  .

    

∂
∂z

−
i

2k0
∇T

2 −
2πi

λ vac
γI

 

 
 

 

 
 u = 0  ,

    
n(E) = n0 +

1

2
n2E2 + ...  .

      
∇2 +

n2 (E)ω2

c2

 

 
 

 

 
 E = 0  ,
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2. Even in 2D, it is often not feasible to adequately
resolve beam features at the sizes that are most
p rone to self-focusing amplification.

Given these difficulties, we have recently added11 a
number of features to the code to warn users about fil-
amentation danger.

Sulem et al. have shown12 that intensity perturba-
tions of the most unstable size and shape will collapse,
during propagation through a uniform nonlinear
medium, in a distance such that ∆B0 = γI0∆z = 2.3,
where I0 is the maximum intensity at the peak of the
initial perturbation. By detecting and reporting the
maximum over the transverse position of the ∆B
through the thickness of any given optic, PROP92
tracks the safety margin with respect to collapse in that
optic. To allow for optical gain (also calculated by a
split-step algorithm), the maximum ∆B(x,y) is recalcu-
lated from the current z-position to the exit face of the
optic at each z-step.

B e f o re the NLS becomes singular, the collapse
p rocess is limited by nonlinear processes, such as
optical breakdown (not included in the model).
These breakdown processes led to the “angel hair”
tracks in the Nova and Beamlet high-power optics.
PROP92 has a test for breakdown-induced tracking,
based on an extrapolation of the peak irradiance in
the beam. Tre n h o l m e1 3 has numerically verified that
during the filamentation process, all perturbations
evolve to a shape resembling the “ground state”
(which collapses most rapidly) and that late in the
collapse the intensity scales as (zc – z)– 4 / 3, where zc
is the position of the singular collapse point. At
each z-step through the slab, the maximum calcu-
lated intensity is scaled by [zc/ (zc – ze x i t) ]

4 / 3 t o
p roject a maximum anticipated self-focused inten-
sity in the slab. A warning message is printed if
this projected intensity exceeds a user- e n t e re d
b reakdown intensity.

Finally, PROP92 includes a check on the adequacy
of the grid spacing to resolve the most important struc-
ture. This check is based on the Bespalov–Talanov (BT)
theory of the linearized growth of independent Fourier
modes.3,4 If we expand u as

(11)
      

u(x , y, z) = u0 1+ ακ(z)eiκ⋅r

κ
∑

 

 
 
 

 

 
 
 
  ,

substitute u into Eq. (9), and drop terms of order α2, we
find that ακ and           are coupled, and they grow such that
where

(13)

Defining the mode amplitude as ακ2 + α–κ2,
maximum gain at given κ occurs when

(14)

This maximum modal gain is 

(15)

Maximizing G with respect to Θ, we find that the
mode with maximum growth according to BT is

(16)

PROP92 issues a warning if the spatial frequency of
this mode is greater than the Nyquist frequency
κNy=2π min(Nx / Lx, Ny / Ly).

Optical Damage
Besides tracking caused by nonlinear self-focusing,

which leads to superhigh intensity and plasma forma-
tion, large optical f l u e n c e can lead to optical damage
ranging from color-center formation to material fracture .
So far, there is no adequate explanation of what causes
the formation of these damage sites. However, Campbell
et al. have compiled1 4 an extensive experimental
database of damage fluences for various materials during

    Θmax = B

    

G = 1+
2B2

(SΘ)2
sinh2 SΘ

+
2B

SΘ
sinhSΘ 1 +

B2

(SΘ)2 sinh 2 SΘ  .

    

α–κ
* = e– iφακ

φ = π
2

+ tan–1 Θ – B

SΘ
tanh SΘ 

  
 
    .

    

Θ = κ 2z 2k0

B = γu0
2z

S = 1 – 2B Θ  .
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  α−κ*

(12)

    

ακ z( )
α – κ

* z( )
 

 
 

 

 
 =

coshSΘ – i
Θ – B

SΘ
sinhSΘ

         – i
B

SΘ
sinhSΘ

   
i

B

SΘ
sinhSΘ                

coshSΘ + i
Θ – B

SΘ
sinhSΘ

 

 

 
 
 

 

 

 
 
 

ακ 0( )
α –κ

* 0( )
 

 
 

 

 
   ,



their exposure to nearly Gaussian pulses of various pulse
lengths. When the pulse length is between about 10 ps
and about 100 ns, the data are consistent with the scaling

, (17)

where ΦD is the fluence at which damage sites first
appear, τ is the Gaussian pulse width, and C and β are
material-dependent constants. In particular, β ranges
between about 0.3 and 0.5 for the various materials of
interest and is independent of τ, for a given material,
over 4 to 5 decades of pulse duration.

For many applications, such as driving ICF targets on
N I F, it is necessary to subject optical materials to high
fluence with a temporal pulse history that does not
resemble Gaussian. To assess the danger of optical 
damage from such pulses, we have implemented a phe-
nomenological diffusion-like model,1 5 for damage fro m
arbitrarily shaped pulses.

The model assumes that damage is related to the
accumulation of some quantity D whose source is 
proportional to the local laser irradiance, and which
accumulates with a diffusive kernel. Damage is 
presumed to occur instantly if D exceeds some 
material-dependent critical value DD. Trenholme
demonstrated that no true diffusion model in 1, 2, or 3
dimensions can match the observed data. Rather, he
was led to posit a form,

(18)

where d is an effective dimensionality, I is the local
irradiance, and A is a constant. Although Eq. (18) is
formally singular when d ≥ 2, this is not important
because all existing damage data correspond to d ≤ 1.
Equation (18) is related to the measured data by substi-
tuting for I, a Gaussian with peak value ID and full
width at half maximum τ. Evaluating the maximum
over t of the resulting damage integral gives 

(19)

where, for given d, the maximum of the integral is sim-
ply a number that can be evaluated once numerically,
and the scaling with τ is explicit. Evaluating the flu-
ence, ΦD, for the same Gaussian pulse and setting it
equal to Cτβ identifies d as 2β and yields

(20)

For each optic for which damage calculations are

    
DD =

AC

π
( 4 l n 2 )β/ 2max

ξ

e−(ξ −s)2

sβ  
0

∞
∫ ds  .

    
DD = IDAτ1−d/2 max

ξ

exp −4ln 2(ξ − s)2[ ]
sd/20

∞
∫  ds  ,

    
D(t) = A

I(t − s)

sd/ 20

∞
∫  ds  ,

  ΦD = Cτβ

desired, the experimental scaling values C and β are
input to PROP92. Equation (20) is then evaluated, and
the limit value of the damage integral is stored. Each
time that the beam passes that point in the laser chain,
the damage integral [Eq. (18)] is evaluated for each
spatial grid point on the calculational mesh. The maxi-
mum of the ratio D/DD is reported. If that maximum
is greater than one, a warning is issued and the dam-
aged area fraction is reported. Note that the constant A
drops out of this calculation.

Laser Component Models
PROP92 is a general-purpose computational tool for

simulating the operation of laser chains and for opti-
mizing their performance. To enable this process, it
contains a library of models of the components that
make up the chain and a sequencer that controls the
order in which the beam encounters each of these
modules. In 2D, the beam is stored as an Nx × Ny × Nt
array of complex numbers. We have already described
how the propagation between components is modeled
as an inverse FFT of a phase times an FFT of this array.
We have also described how the array is diagnosed to
assess the danger of filamentation or optical damage.
In this section, we describe the transformations we use
to model some of the more important optical compo-
nents that comprise typical laser chains.

Slabs

In PROP92, a slab is a region of space, of length ∆z,
filled with a uniform medium of given n0 and γ, with
given small-signal gain G (at small input fluence, Φin,
the output fluence is G Φin), saturation fluence Φsat,
and transmissivity T. If the gain is not unity, then gain
typically depends on the transverse coordinates and
evolves as part of the propagation algorithm.

Propagation through slabs is modeled by a split-
step process, with the step size δz (∆z/δz = integer)
specified by the user. A propagation step with length
δz/2 is followed by the application of nonlinear phase
B(x,y,δz) and a gain calculation (described below) that
also correspond to length δz. After that, propagation
steps of length δz are alternated with near-field effects
corresponding to δz. A final propagation of length
δz/2 completes the slab. Transmissivity is applied as a
field multiplier at the slab entrance and exit.

The gain calculation is a simple Frantz–Nodvik16

transformation. The initial slab gain G(x,y) is divided
equally among the z-slices—each has gain g(x,y,z) =
G(x,y) δz/∆z. This array of real numbers is stored on
disk and read into memory successively as needed. At
each spatial point, the temporal dependence of the
field is thought of as a sequence of piecewise-constant
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values,so afluence Φj = E(x,y,tj) 2 δtj can be associated
witheach time slice. Asthe jth time slice at x,y passes
through the gain slice at x,y,z, the Frantz–Nodvick
model for a two-level, homogeneously broadened laser
line is

(21)

The field for this time slice is scaled to the new flu-
ence, and the gain distribution for this z-slice is over-
written by the new values so that the slab is
cumulatively saturated.

Aberrations

PROP92 is capable of imposing a variety of phase
aberrations on the field. Included are the low-order
Seidel aberrations tilt, focus, astigmatism, spherical,
and coma. Also, phase ripples, 

(22)

can be applied at arbitrary amplitude, scale length,
transverse direction, and phase. Another possibility
is random phase noise with specified peak-to-valley
amplitude and correlation length. Finally, an arbi-
trary phase-shift distribution can be specified
n u m e r i c a l l y.

Lenses

A lens is treated as a combination of a slab (with
unity gain but with some thickness and given linear
and nonlinear indices) and a thin lens transformation,

(23)

Lens aberrations must be specified as separate
“aberration” components.

Spatial Filters

A spatial filter consists of two focusing lenses of
focal lengths f1 and f2, separated by a distance f1+ f2,
and a pinhole at the common focal plane. In a laser
chain, spatial filters fulfill three important functions.
First, since the field at the lens focal plane is a dimen-
sional-scale and an intensity-scale of the incoming
field’s Fourier transform, the pinhole strips off the
high-spatial-frequency portions of the beam.

    
R ←

Rf

R + f
  .

      E ← Ee2πia cos(q⋅r+χ )  ,

    

Φout = Φsat ln 1+ g eΦ in Φsat – 1( )[ ]
gout =

gin

gin – e –Φ in Φ sat g in –1( )
  .

Otherwise the beam would be more prone to self-
focusing. Second, in passing through the filter, the
beam’s transverse dimensions are magnified by the
factor m = f2/ f1, with a corresponding change in irra-
diance. Third, since an object at distance d before the
filter is imaged at a distance m( f1 + f2 – md) after the
filter, the evolution of long-scale-length phase noise
into amplitude modulation is inhibited by proper
placement of filters in the system.

Spatial filters can be treated as a sum of their
constituent parts: a lens transformation, followed by
a propagation of length f1, clipping at the pinhole,
p ropagation by f2, and another lens. As long as the
beam entering the filter is not focusing or defoc u s i n g ,
it is rigorously correct to use the lumped-element
transformation implemented in PROP92 instead.
The lumped-element transformation consists of
clipping the Fourier transform of the field array, pro p-
agating t h rough a negative distance –( f1 + f2) /m,
magnifying the beam by m, and spatially inverting
the beam in the transverse plane E(x , y)←E(– x , – y) .
PROP92 offers a variety of options for pinhole
sizes, shapes, orientations, and transverse off s e t s
(including the option to describe the filter function
numerically). The pinhole edge is smoothed over
several transverse grid steps to avoid aphysical
numerical ringing.

Mirrors

Mirror components reverse the logical direction that
the beam sequencer traverses chain components,
enabling us to model multipass architectures. Tilts on
the mirrors are permitted, affecting         and       in
Eq. (1), and thereby affecting the beam’s average trans-
verse position as it samples aberration and gain fields.
Recently, Henesian has added a model for phase-con-
jugating mirrors, including an intensity-thresholding
effect. 

Masks and Obscurations

Both masks and obscurations modify the beam by
applying a near-field intensity filter that varies with
transverse position. Both offer a number of built-in
shapes and orientations. They offer control over the
d e g ree of edge smoothing, and both offer the option
for numerical description of the filter function. A
mask re p resents a filter that passes the center of the
beam and removes the edge (such as would occur
because of the finite physical aperture of chain
components). An obscuration removes some small
portion of the center of the beam (such as would
occur if the beam struck a small obscuration).
Obscurations also offer the option of applying a
specified phase to a portion of the beam, to re p re-
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sent, for example, regions of surface irregularity or
of bulk index variation.

Adaptive Optics

Adaptive optics are used in laser systems to corre c t
for long-scale-length aberrations induced on the beam.
At some point in the chain, the beam reflects from a
deformable mirro r. The mirro r’s surface can be dis-
torted by as much as several wavelengths by displacing
an array of mechanical actuators. At another point, a
phase sensor is located. Operation of the adaptive optic
consists of adjusting the displacement of the mirro r
actuators to minimize the transverse variation of the
phase at the sensor.

On NIF, the deformable mirror is one of the end
mirrors in the multipass cavity. Phase is detected by a
Hartmann sensor, which consists of a lenslet array (on
NIF it will be triangular) and a light sensor capable of
detecting the centroid of the focal spot from each
lenslet. The operational algorithm attempts to minimize
the sum of the squares of the focal spot displacements.
A transfer matrix is measured by observing the spot
movements resulting from small travel of each of the
actuators. A matrix inversion then predicts the actua-
tor displacements necessary to best cancel a measured
set of spot displacements. By placing this correction
procedure into a feedback loop, continuous correction
for time-varying effects (such as air-path turbulence
and decaying thermal sources) has been
accomplished.17

Modeling the correction pro c e d u re has two parts:
(1) determining the beam phase modification accom-
panying a given set of actuator displacements and
(2) finding the best set of displacements to use. For
the first part, we have implemented a model where
the mirror surface (hence the applied phase field) is
assumed to be a sum of Gaussians, 

(24)

In Eq. (24), the sum is over the set of actuators, rj are
the set of centersof influence (nearlythe sameasthe
physical actuator positions), σ is the influence width,
and the source strengths aj are related to the actual
actuator displacements. Typically, the rj are located on
a regular triangular or rectangular array with some
outward displacement for the sources on the array
boundary caused by their nonhomogenous environ-
ment. The values of rj and σ are inputs to PROP92’s
adaptive-optic model. In one of its modes of opera-
tion, the aj a re also input parameters, in which case
the component is modeled as a determined phase

      

φ(x, y) = a je
− r−rj

2
/σ 2

j
∑ .

modification. This form of operation allows optimiza-
tion of the best set of source strengths to meet some
external objective, for example maximizing the energy
into a hohlraum laser entrance hole.

In another mode of operation, PROP92 can adjust
the aj to apply a best local phase correction in mini-
mizing the fluence-weighted mean square deviation
from flat phase. “Adapt” components that are multi-
passed retain the shape that is determined the first
time they are encountered. This method, since the
phase correction is local and simply determined, is
useful for obtaining a quick and reasonably accurate
approximation of the performance enhancement that
might be expected.

Although it is not strictly part of PROP92, Henesian
has built up a realistic model of the adaptive optic
operation as it will be implemented on Beamlet and
NIF.18 At the end of a PROP92 simulation of a chain,
the field array is dumped to disk. This file is read by a
postprocessor routine that simulates the action of the
Hartmann sensor. Portions of the array are masked off
and brought to focus, and the centroid of each focal
spot is calculated. If there are Na actuators, then Na
separate PROP92 runs are required to determine the
transfer matrix, which is easily inverted (or SV decom-
posed if, as typically, it is nonsquare). For a given set of
component aberrations, two more PROP92 runs suffice
to measure the corrections required and to predict the
performance with those corrections.

Plots

Considerable attention has been given to the graph-
ical presentation of PROP92 results. At any point in
the chain simulation, the user can display plots of
n e a r-field intensity, fluence, or phase—or of intensity
or fluence either in the far field or in a partial focus
region. These can be displayed as surface plots, con-
tour plots, or cuts, either through specified position or
through the maximum intensity point. The vertical
scale can be linear or logarithmic. PROP92 has the
capability to window the plots, which add resolution
to a region of interest. As mentioned, PROP92 is capa-
ble of dumping the field array to disk, which enables
us to use the graphical power of packages such as IDL
for postprocessing.

Summary
PROP92 is a full-featured Fourier optics laser

modeling, design, and optimization tool. It includes
integrated models for a comprehensive set of optical
elements and effects, as well as sophisticated algo-
rithms for assessing the risk of optical damage and
filamentation. As detailed elsewhere in this Quarterly,
PROP92 predictions have been validated by compari-
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son with Nova, OSL, and Beamlet experiments. Given
reliable data on material properties and optical quality,
we have confidence in PROP92’s predictions of NIF
performance.
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